999 resultados para Chiral Separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CE with electrochemiluminescence, (ECL) detection technique was successfully applied for the chiral separation of a kind of class IA antiarrhythmic racemic drug. To the best of our knowledge, this is the first report of ECL detection used in chiral CE. To get better detection sensitivity and good enantioresolution at the same time, the conditions of capillary inlet and outlet buffer were systematically optimized. Unlike the traditional chiral separation method, the buffers we used in the capillary inlet and outlet differed from each other in terms of buffer pH, ionic strength, type of BGE as well as buffer composition. Under the optimum conditions, baseline enantioseparation and highly sensitive detection of the enantiomers were achieved. Wide linear relationship of each enantiomer was achieved in the range of 5 x 10(-7) to 2 x 10(-5) mol/L with relative coefficients of 0.996 and 0.997, respectively. The detection limits were estimated to be 8 x 10(-8) and 1.0 X 10(-7) mol/L (S/N = 3) for the enantiomers, respectively. In addition, a successful application of this new method to the chiral separation of the racemic drug in spiked plasma samples confirmed the validity and applicability of the chiral CE-ECL method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensitive end-column amperometric detection has been successfully coupled to capillary electrophoresis for chiral separation of promethazine, with a carbon fiber microdisk electrode as working electrode. Baseline separation and sensitive detection were achieved under optimum conditions: 0.030 M Na2HPO4 and 0.015 M citric acid at pH = 2.50, 1.0 mM beta -CD, 10 kV separation voltage, and detection potential 1.10 V (vs Ag/AgCl). The numbers of theoretical plates were higher than 700000, and the detection limit was 5 x 10(-8) M. On-line treatment of the electrode has also been studied and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binaphthol enantiomers could be baseline separated using cholic acid as chiral selector at the concentration of 20 mmol/L. The effects of cholic acid concentration and pH of the buffer on separation were studied. The influence of methanol, acetonitrile, iso-propyl alcohol were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular imprinting chiral stationary phase against Cbz-L-Serine (Cbz-L-Ser) and Cbz-L-Alaine (Cbz-L-Ala) were prepared utilizing acrylamide + 2-vinylpyridine as combined basic functional monomers. Cross-selectivity was used to obtain simultaneous chiral separations of Cbz-DL-Ser and Cbz-DL-Ala by connecting two columns packed with Cbz-L-Ser and Cbz-L-Ala imprinted chiral stationary phase, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal design and uniform design were used for the optimization of separation of enantiomers using 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD) as a chiral selector by capillary zone electrophoresis, The concentration of DM-beta-CD, buffer pH, running voltage, and capillary temperature were selected as variable parameters, their different effects on peak resolution were studied by the design methods. It was concluded that orthogonal design offers a rapid and efficient means for testing the importance of individual parameters and for determining the optimum operating conditions. However, for a large number of both factors and levels, uniform design is more efficient, The effect of addition of methanol and citric acid buffer on the separation of enantiomers was also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82 300 and 38 800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of traps-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111 100 and 107 400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is a selected review, highlighting our results obtained in an extended screening program ("The German-Chinese Drug Screening Program"), with a focus on a set of original data obtained with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin(TM-beta-CD) as the chiral solvating agent (CSA). The enantioseparation of 86 drugs by capillary zone electrophoresis in the presence of this CSA was successful for 47 drugs. The migration separation factors (alpha(m)) and the migration retardation factors (R-m) were compared with those found for native beta-cyclodextrin (beta-CD). The patterns thus obtained were also compared with those observed for hexakis(2,3,6-tri-O-methyl)-alpha-CD (TM-alpha-CD) and octakis(2,3,6-tri-O-methyl)-gamma-CD (TM-gamma-CD), respectively. From the statistical data, it can be concluded that there is a remarkable influence of the analyte structure on the electrophoretic data. A substructure 4H was found in the analyte structure that has a significant influence on the analytes' behaviour. Thus, analytes bearing the substructure 4H do not only have a strong affinity to the CDs but also a high rate of success of chiral separation in all systems reviewed. In light of this, the different ring sizes of native cyclodextrins (alpha-, beta- and gamma-CD) readily explain their behaviour towards a limited test set of chiral drugs. Sterical considerations point to the significance of side-on-binding versus inclusion in the cavity of the host. In addition to the findings from the screening program, numerous references to the Literature are given. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bile salts are known to aggregate into micelles in biological systems; however, the fundamental structure and dynamics of bile molecule micelle formation are poorly understood. Previous studies have established that the bile salt cholate is capable of performing chirally selective micellar electrokinetic capillary chromatography (MEKC) separations of model racemic binaphthyl compounds 1,1¿-binaphthyl-2,2¿-diyl hydrogen phosphate (R,S-BNDHP) and 1,1¿-bi-2-naphthol (R,S-BN). Nuclear magnetic resonance (NMR) has been established as a complementary technique for understanding chiral selectivity and micelle formation events based on changes in proton chemical shifts of the probe molecules BNDHP and BN as well as of cholate. This work investigated the effects of the probe molecule, the alkali cation identity and temperature on cholate micelle aggregation and MEKC separations of R,S-BN and R,S-BNDHP. The probe molecule was found to mediate micelle formation by MEKC and proton NMR. A low (0.1 mM) concentration of probe was found to have minimal effects on micellization events detected by proton NMR while higher probe concentration (2.5 mM) was found to mediate micellization causing micellization events to occur at lower cholate concentrations. This work also investigated the effects of alkali counterion on chiral separation. Generally, counterions with larger crystal cationic radius were found to cause greater chiral separation power. NMR data suggest that protons near the surface of the cholate micelle are most sensitive to the cation identity, suggesting a model of improved separation based on the cation sterically inhibiting binding of one isomer. Finally, the effect of temperature on MEKC separation was investigated. Separation power of R,S-BN and R,S-BNDHP appeared to increase linearly with temperature for 22.0 mM to 50.0 mM pH 12.0 cholate. In total, these results indicate that cholate aggregation is dependent on multiple conditions. Understanding the roles that these factors play in influencing cholate micellization can inform better separation in MEKC.